

Limits to Biophysical Growth Sustainable Cities Sustainable Transport Forum, Melbourne

Dr Graham Turner CSIRO Sustainable Ecosystems 26 March 2009

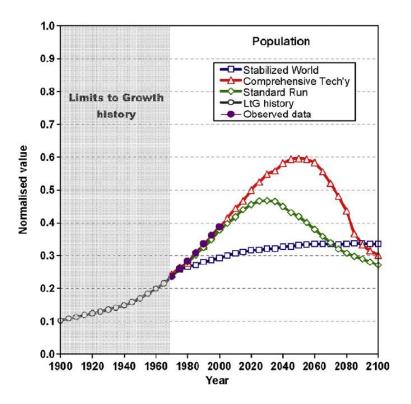
Global and national challenges require immense change

- The world is tracking on the Limits to Growth 'business as usual' scenario
 - leads to ecological and economic collapse (possibly from 2020 onwards)
- Australian "Future Dilemmas" are also playing out
 - potentially conflicting challenges over the coming decades in labour, fuel and energy, water, land, food, emissions, infrastructure

Range of responses

 technology and marginal change are not likely to be enough (or may even make it worse)

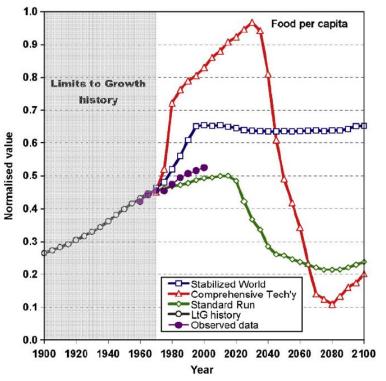
The Limits to Growth


- Never said we would run out of resources
 - and certainly not by year 2000
- System dynamics model of the world economy and environment
 - population, resources, industry, agriculture, services, pollution
- Tested many different scenarios in the model e.g.,
 - "standard run" (business as usual)
 - "comprehensive technology"
 - "stabilized world"
- Scenarios from 1970 to 2100
 - compare global data from 1970 to ~2000

Population

- Population has almost doubled since 1970, to more than 6 billion
 - continued growth is all but inevitable

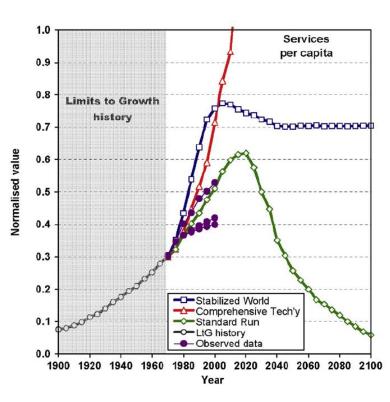
(scale: $1.0 \sim 16$ billion)



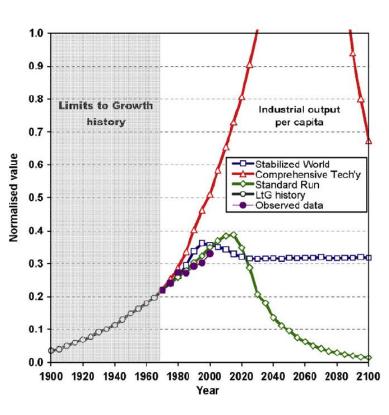
Food per capita

Food per capita is growing slowly

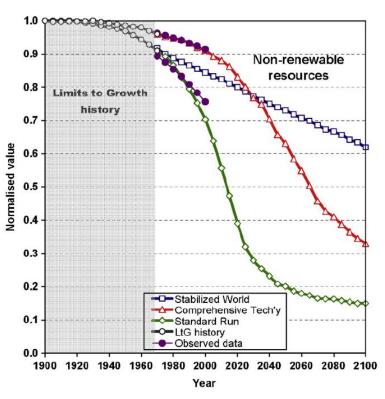
- 15% increase on 1970
- but possibly flattening out


(1.0 ~ 2000 kilocalories per capita pa ~ 8.4 MJ per capita pa)

Services per capita

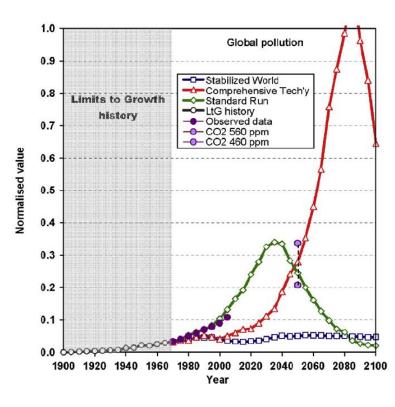

- Services per capita have grown quickly
 - up to 75% increase on 1970
 - show signs of diminishing growth
 - upper data electricity p.c.
 - lower data adult & juvenile literacy rates
 - (1.0 ~ \$1000 per capita pa in 1968 \$, ~\$12,000 per capita pa 2007 \$)

Industrial output per capita


- Industrial output per capita growing moderately
 - · a measure of material wealth
 - output also provided to agriculture and services
 - minor effects of oil crises @1980?
 - 50% increase on 1970
 - (1.0 ~ \$1000 per capita pa, in 1968 \$, ~\$12,000 per capita pa 2007 \$)

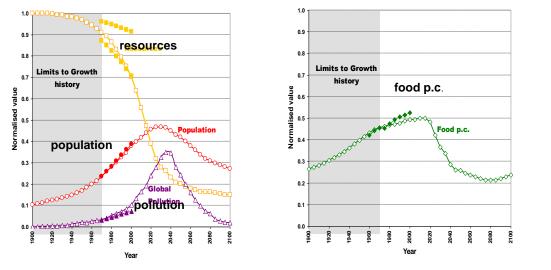
Non-renewable resources

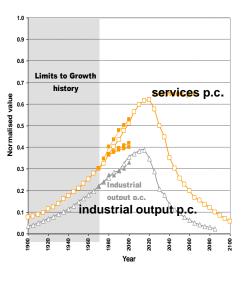
- Fraction of non-renewable resources remaining decreasing moderately
 - data based only on energy resources
 - i.e., "optimistic" for metals and other minerals, e.g., phosphorus, rare earth metals
 - upper resource estimate now ~90% remaining
 - lower resource estimate now ~75% remaining
 - requires much more industrial output for extraction when resources @50%



Global pollution

- Global pollution growing exponentially
 - model pollution reduces life expectancy and agricultural productivity
 - data is atmospheric CO₂ concentration
 - ~300% increase on 1970
 - IPCC scenarios for 2050 are broadly consistent with LtG scenarios


(0.0 ~ 300 ppm CO₂; 1.0 ~ 1080 ppm)



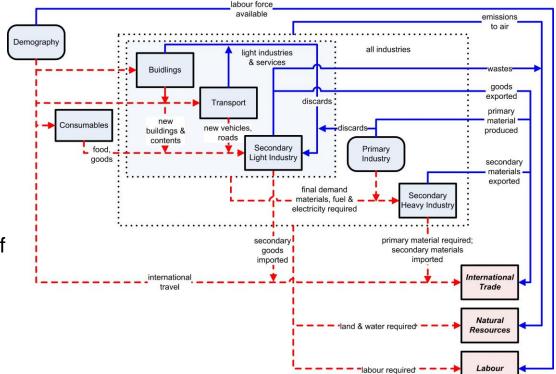
The collapse occurs through resource depletion and environmental pollution

- increasing population and demand for material wealth
- drives more industrial output, which requires more resources
- · decreasing resources require more of the industrial output for resource extraction
- · pollution from industry continues growing exponentially
- · industrial capital is not maintained to support increased production
- industrial system collapses
- increasing pollution and lack of inputs to agriculture degrades food production
- · food production and health services fall
- population falls after demographic delays

CSIRO. Limits to Growth and Australian Challenges

Other lessons from The Limits to Growth

- Other scenarios show similar effects
 - differences in timing and specific combination of factors
- In general, attempting to solve one challenge makes others worse
 - like pressing in on a balloon, first in one direction, and then another when it expands, etc. until it bursts
- Early action is required
 - action delayed until 2000 results in some ecological and economic impact
- Only less materialist lifestyle combined with technological progress leads to a sustainable global system
 - requires material lifestyle at about a 1950's (+ or decades?) level
 - 1 car per household, 1 TV, houses 50% smaller, no aircon?
 - population control



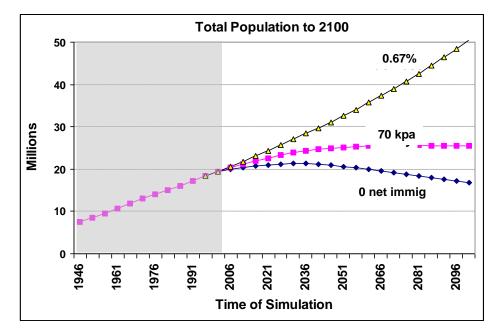
What about the Australian context?

- Australian Stocks and Flows Framework, ASFF
 - Based on mass/energy conservation
 - Grounded with historical data
 - Transparent assumptions
 and data
 - Quantitative exploration of scenarios
 - Free of ideology

Many studies

• originally Future Dilemmas

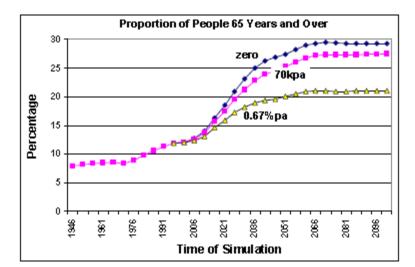
Australia faces multiple confounding environmental and economic challenges


- population
 - currently adding 1 new Canberra each year
 - · population reduction might be difficult, slow
- labour
 - aging \Rightarrow effective labour force may decrease by 20-30% by 2030
- agriculture
 - possible complete degradation of land in 4-6 decades
- fisheries
 - catch rate peaked in the 1990s, unlikely to increase
- water
 - 30% reduced river flow by mid century with ~2 °C global temperature change (cf 1990)
- transport fuel
 - domestic oil production could be 20% of demand by 2030
- infrastructure
 - all new power plant commissioned after 2011 must be C-free in 2050 to achieve 90% C reduction (of 1990 level); 60% target has a 2015 cut-off
 - 1/3rd of today's buildings may still exist in 2050
- GHG emissions
 - CO₂ emissions plateau and rise even with buildings 50% more efficient, cars @3L/100km, coal power plant at maximum thermal efficiency

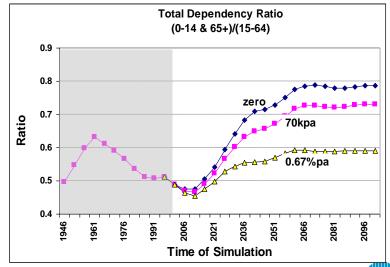
Population growing

Population

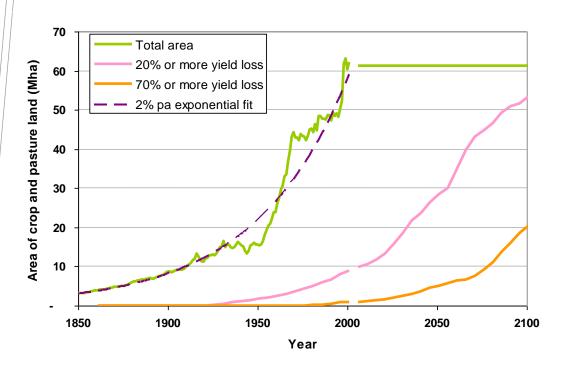
- likely to increase by 50% or
- 30+ million by 2050
- currently increasing by ~300,000 pa
- net immigration > natural increase



Population aging

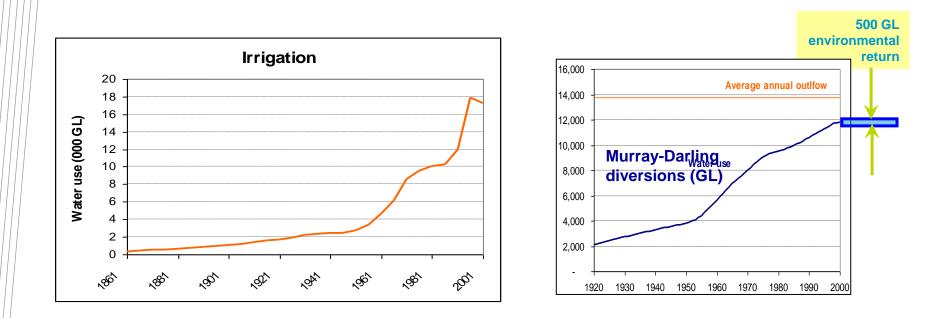

• High immigration does not halt aging

Labour force constraints

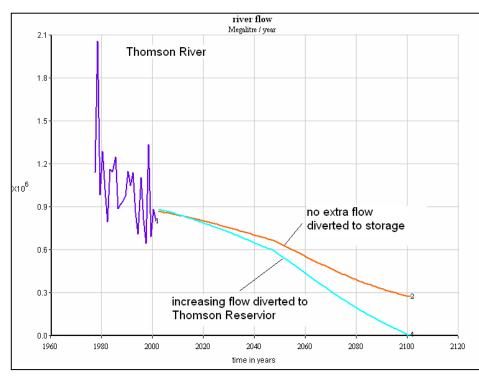

effective labour force may decrease by 20-30%

Agriculture has expanded rapidly

- adding new land has masked degradation of older land
 - past 2% pa growth unlikely to continue
 - doubling every 3 decades would require ½ Australian land area before 2100
- no change to land area may mean half may be degraded in 5 decades

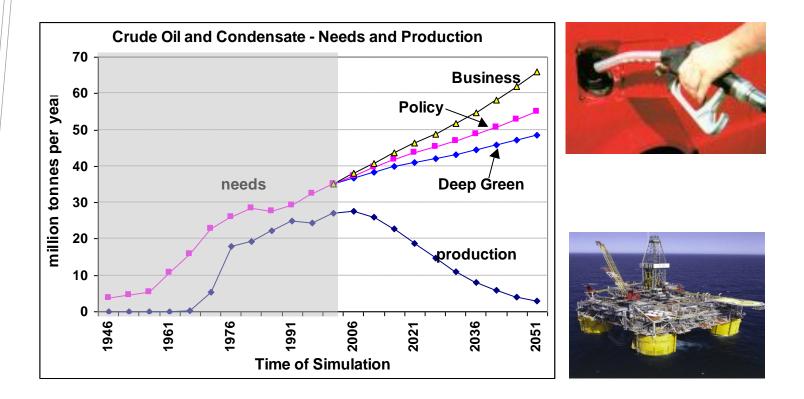


Water use has increased rapidly


- many southern rivers are stressed, over allocated
 - 500 GL to be returned to the Murray is a small fraction

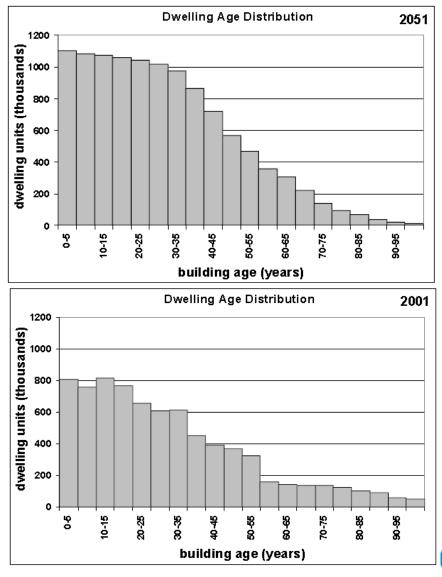
Water resources threatened by climate change

- River flow (e.g., Thomson supplying Melbourne) cannot be maintained indefinitely
 - 2.2 °C global temperature change (relative to 1990) would reduce river flow by more than 30% by mid century



Transport fuel – imports or a transition?

- growing domestic oil deficit
 - importing 80% by 2030?
 - shift to natural gas could provide security until about 2030



Urban stock lasts a long time

• Dwellings


- 1/3rd of today's buildings may still exist in 2050
- requires new buildings to be even more energy and water efficient than the overall target

Infrastructure lasts a long time

- Electricity generation plant
 - some current electricity plant may still be operating in 2050
 - rapid change (5-10 years) is PJ/yr required to achieve GHG targets

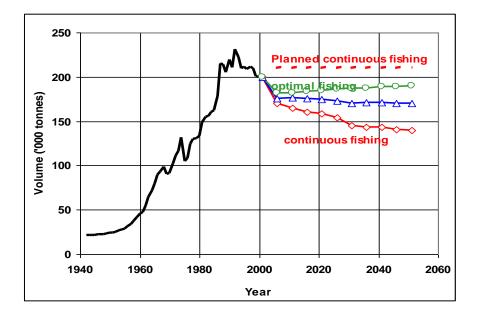
Projected electricity generated in 2050 by brown coal plant in Victoria,

by plant vintage

- 2015 is the cut-off year for a 60% C reduction target
- (on 1990 level) in 2050
- 2011 is the cut-off for a 90% target
 - assuming all new electricity plant after the cut-off are 100% C free (in 2050)
 - · assuming all plant before the cut-off emit C
 - assuming continued energy consumption growth of ~3%pa

Global and national challenges require immense change

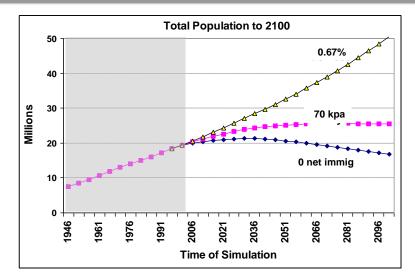
- The world is tracking on the Limits to Growth 'business as usual' scenario
 - leads to ecological and economic collapse (possibly from 2020 onwards)
- Australian "Future Dilemmas" are also playing out
 - potentially conflicting challenges over the coming decades in labour, fuel and energy, water, land, food, emissions, infrastructure

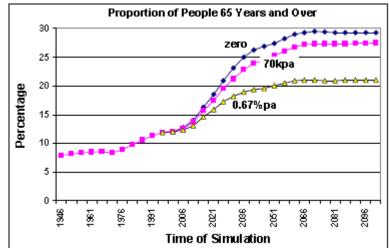

Range of responses

 technology and marginal change are not likely to be enough (or may even make it worse)

Seafood catch is constrained

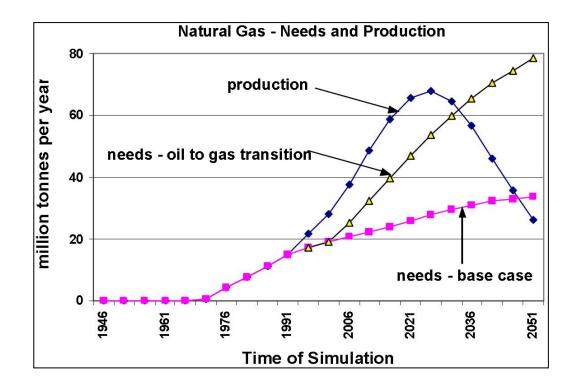
- catch rate has peaked in 1990's
 - fish stocks depleted
 - future catch cannot grow strongly, and may decline



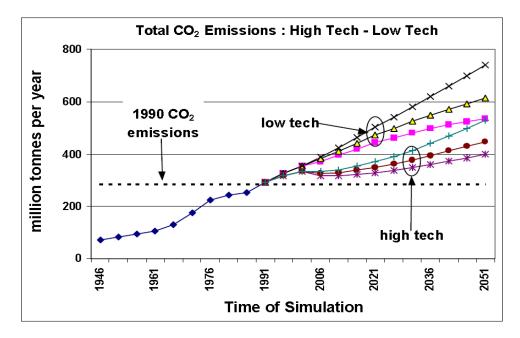

Population, growing and aging

Population

- likely to increase by 50% or
- 30+ million by 2050
- currently increasing by ~300,000 pa
- net immigration > natural increase
- 1 new Canberra each year
- Labour force constraints
 - aging population
 - effective labour force may decrease by 20-30%



Transport fuel – transition to gas?


- switch to gas provides a few decades
 - bio-fuels may affect (or be affected by) biodiversity, land, water, amendments and labour constraints
 - · unlikely to supply more than a fraction of the fuel required

Greenhouse emissions increasing from energy use

• GHG emissions

- increasing well beyond Kyoto level
- · substantial efficiency improvements have temporary effects
 - buildings 50% more efficient by 2020
 - electricity generation at maximum thermal efficiency
 - cars at 3 L/100km by 2020
 - no rebound effect assumed

Summary

- Analysis approach Australian Stocks and Flows Framework (ASFF)
 - whole-system physical account explicit process model
 - transparent, long-term, dynamic, data-rich
- Results National Sustainability Challenges
 - oil deficit growing
 - fish stocks depleted
 - agricultural land degraded
 - water resources over-allocated
 - workforce under pressure
 - trade balance worse
 - waste flows growing
 - pollutants and GHG increasing

• Key message:

 a national stocks and flows framework is ideal for integrated sustainability analysis

Australia faces multiple confounding environmental and economic challenges

- labour
- agriculture
- fisheries
- water
- biodiversity
- transport fuel
- infrastructure
- GHG emissions
- Attempting to solve one problem may increase the others
 - Most issues depend on or impact many of the others

Why does growth appear necessary?

- Innovation (production efficiency) encourages growth
 - savings to consumers can be used to consume more
 - savings to producers can be invested in more production
 - displaced labour (from technological efficiency) would lead to high unemployment
 - so increased consumption provides a demand for greater production and labour employment

What possible economic changes or systems?

- What modifications or alternatives are available?
- What are their benefits and weaknesses?
- How likely is any change?

What possible economic changes or systems?

- Tax reform ecological tax (on resources and wastes)?
 - does this address efficiency and growth? (cf C intensity & GHG)
- Cap and trade?
 - carbon...nitrogen, hydrogen (water), phosphorus...?
 - serious questions about the reality of C reduction possibilities (e.g., IEA!!)
- Economic crisis = window of opportunity for change?
- Other monetary systems?
 - e.g., mutual credit union, commodity backed money ("Economia", Geoff Davies)
- Strategy & prices set by physical reality / forecasting?
 - monitoring (is not enough); modelling, back-casting
- Likelihood of change very low?
 - powerful vested interests, lack of public acceptance, multiple simultaneous change
 - prepare emergency plans for rapid response?
 - prepare lifeboats?
 - a new "Canberra" each year! could they be largely self-reliant?

These system-wide analyses show...

- The scale of the challenge is immense
 - marginal change is not enough
- Technology alone is likely to make things worse
 - rebound (backfire) effect & growth
- Less material consumption is required
 - large lifestyle changes are required (along with technological improvements)
 - but how to maintain employment?
 - how to deal with innate innovation?
 - less days/week
 - how to transition orderly, not transpose chaotically?
 - rate of change similar to the past, but in the opposite direction (does that "double" the challenge?)

Global and national challenges require immense change

- The world is tracking on the Limits to Growth 'business as usual' scenario
 - leads to ecological and economic collapse (possibly from 2020 onwards)
- Australian "Future Dilemmas" are also playing out
 - potentially conflicting challenges over the coming decades in labour, fuel and energy, water, land, food, emissions, infrastructure

Range of responses

 technology and marginal change are not likely to be enough (or may even make it worse)

Sustainable Ecosystems

Graham Turner Leader, Stocks and Flows

Phone: +02 6242 1653 Email: graham.turner@csiro.au

Thank you

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176 Email: enquiries@csiro.au Web: www.csiro.au

