Lessons from History of Collapse
Sustainable Cities Sustainable Transport Forum, Melbourne

Dr Graham Turner
CSIRO Sustainable Ecosystems
26 March 2009
Messages

• There are success stories of avoiding collapse, but very few within isolated systems

• There is a very common recourse to using technology, rather than changing behaviour

• It appears that we (modern society) have progressed SLOWLY along the road map (stages) toward addressing our global problems

• But we now appear to be potentially in the last stage:
 • solution unlikely
Outline

• **Historical reflections**
 • The Roman Empire – a common case study
 • LeBlanc
 • competition for resources
 • Tainter
 • diminishing returns from complexity and technology
 • Diamond
 • choices along the road to failure or survival
 • Homer-Dixon
 • gap between increase of challenges and ingenuity

• **Lessons from history applied to contemporary times**
 • Successes?
 • Contemporary issues
 • Prognosis
Selection of comprehensive historical analysis

• Steven LeBlanc
 • *Constant Battles: why we fight*
 St Martin’s Griffin, 2004

• Joseph Tainter
 • *The Collapse of Complex Societies*
 Cambridge University Press, 1988

• Jared Diamond
 • *Collapse: how societies choose to fail or survive*
 Penguin, 2005

• Thomas Homer-Dixon
 • *The Ingenuity Gap: can we solve the problems of the future*
 Random House, 2001
 • *The Upside of Down: catastrophe, creativity, and the renewal of civilisation*
 Island Press, 2006
The Roman Empire – a common case study

• Pressures:
 • Wars
 • Barbarian raids
 • Lack of popular support
 • Agricultural constraints
 • Plagues

• Solving problems involved:
 • Technology
 • Expansion
 • Bureaucracy
 • Taxation
 • Currency debased (print more money)
The Roman Empire – a common case study

• What does collapse mean?
 • loss of society hierarchy
 • loss of living standard
 • loss of life
 • usually rapid
Constant fighting

• LeBlanc
 • we have always fought
 • including pre-humans, hunter-gatherer, tribal farmers, complex societies
 • wars over resource competition
 • typically food supply
 • there are individual cases of peaceful co-existence
 • involve periods when population is below carrying capacity
 • sometimes as a result of earlier conflict!
 • modern period is relatively peaceful

• but doesn’t necessarily imply collapse
 • though there is clearly great pain and death
Diminishing returns

- Tainter
 - Complex societies that collapsed
 - Western Chou Empire
 - Harappan Civilization
 - Mesopotamia
 - Egyptian Old Kingdom
 - Hittite Empire
 - Minoan Civilization
 - Mycenaean Civilization
 - Western Roman Empire
 - Olmec
 - Lowland Classic Maya
 - Mesoamerican Highlands
 - Casas Grande
 - Chacoans
 - Hohokam
 - Eastern Woodlands
 - Huari and Tiahuanaco Empires
 - Kachin
 - Ik
Diminishing returns

- Tainter
 - Possible causes of collapse
 - resource depletion
 - catastrophes
 - insufficient response
 - intruders
 - conflict
 - mismanagement
 - social dysfunction
 - mystical factors
 - chance set of events
 - economic factors

- Complex societies survived earlier pressures and shocks

- So why did they eventually collapse?
Diminishing returns

- Tainter
 - diminishing returns
 - i.e., marginal returns from increasing complexity (including technology) become increasingly smaller over time
 - i.e., pick the low hanging fruit first
 - marginal returns may even become negative?
 - consequently the “buffer” to cope with additional pressures and shocks is smaller
 - society is overwhelmed by subsequent shock

Figure 4-6 Energy Required to Produce Pure Metal from Ore

Thousand kilowatt-hours per ton of metal
Choosing to fail or survive - failures

• **Diamond**
 • societies that have failed
 • Easter Island
 • who cut down the last tree?
 • no-one – a tipping point was reached
 • Pitcairn & Henderson Islands
 • Anasazi
 • Maya
 • Norse Greenland
Choosing to fail or survive - success

- **Diamond**
 - societies that have survived
 - Tikopia
 - bottom-up solution
 - small island (1.8 square km) in SW Pacific Ocean
 - 1,200 people: high density
 - individual farmers all aware of problems
 - combined decision to impose self-constraint

- Tokugawa Japan
 - top-down solution
 - 1600’s semi-feudal society
 - overuse of forest resource, faster than growth
 - shoguns invoke Confucian principles
 - limit consumption
 - impose quota system
 - (any substitution from beyond Japan?)
Choosing to fail or survive

• **Diamond**

 • five key choices
 1. failure to *anticipate* a problem
 • no previous experience, no science
 2. failure to *perceive* a problem in progress
 • no measurements, too complex to observe
 3. failure to attempt a solution (rational, *bad behaviour*)
 • rational for vested interests to maintain their dominance
 4. failure to change *bad values*
 • irrational behaviour, societal values entrenched
 5. failure to change *other irrational behaviour*
 • psychological denial

• and a sixth cause
 6. failure of solution
 • technically not possible
Too smart by half

- Homer-Dixon
 - Ingenuity Gap
 - Biosphere

- Upside of Down
 - energy profits ratios decreasing
 - barrels of oil out for one barrel in: 20 (1970’s) → <10
Consolidating the lessons

- Diamond provides a comprehensive structure
- Do other views correspond with Diamond’s structure?

<table>
<thead>
<tr>
<th></th>
<th>LeBlanc</th>
<th>Tainter</th>
<th>Homer-Dixon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond</td>
<td>Resource wars</td>
<td>Diminishing returns</td>
<td>Ingenuity gap</td>
</tr>
<tr>
<td>No anticipation</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>No perception</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bad behaviour</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bad values</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Other irrational</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Solution unlikely</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Have we learnt anything?
Success stories

- Consider “modern” beginning with the Industrial Revolution
- Ozone depletion from chemicals in refrigerants, etc.
 - global causation
 - regional direct effects
 - global indirect effects
- Disease eradication
 - not a crippling problem
- City smog
 - local issue, not global
- Cuba (oil crises of 1980-90’s)
 - supply of imported oil suddenly withdrawn
 - difficult transition, including revival of local food production
 - local issue
Have we learnt anything? Success stories

- But do they provide indications of choosing to solve the problem?

<table>
<thead>
<tr>
<th></th>
<th>Ozone depletion</th>
<th>City smog</th>
<th>Cuba oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticipated</td>
<td>✗ chemicals in use before reactions known</td>
<td>✗ no previous experience</td>
<td>?</td>
</tr>
<tr>
<td>Perceived</td>
<td>✓ measurements were available, but not accepted until unequivocal</td>
<td>✓ illness and death obvious</td>
<td>✓ very obvious</td>
</tr>
<tr>
<td>Good behaviour</td>
<td>✗ initial resistance to change</td>
<td>?</td>
<td>✓ change lifestyle</td>
</tr>
<tr>
<td>Good values</td>
<td>✗ no change in values</td>
<td>✗ no change in values</td>
<td>?</td>
</tr>
<tr>
<td>No other irrational</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solution possible</td>
<td>✓ chemical substitute; positive signs of improvement, but not certain</td>
<td>✓ improved technology</td>
<td>-</td>
</tr>
</tbody>
</table>

- Poor record of response?
- Technology was used to avoid other changes, or
- Drastic lifestyle change imposed
Have we learnt anything?

Contemporary issues

- **climate change**
 - growing awareness now of acceleration of emissions and impacts
 - potential for catastrophic events
- **ozone depletion**
 - under control?
- **water availability**
 - extraction approaching fresh water resource
 - climate change impacts
- **peak oil**
 - extraction rate unable to support growth in demand
 - transport systems dependent on oil
- **aging populations**
 - insufficient labour force
- **food production**
 - fisheries peaked
 - dependence on mono-cultures
 - uncertainty about genetically modified foods
Have we learnt anything? Where on the road map?

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Is it demonstrated?</th>
<th>No</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not anticipated</td>
<td>Yes</td>
<td>Arrhenius</td>
<td>1900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1960-</td>
</tr>
<tr>
<td>Climate models; Limits to Growth, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not perceived</td>
<td>Yes</td>
<td>Atmospheric</td>
<td>1800-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>measurements; inc’g impacts</td>
<td></td>
</tr>
<tr>
<td>Globalisation hides distant problems; Signal-to-noise issue (e.g., climate variability masks the slower changes)?</td>
<td></td>
<td></td>
<td>1980-</td>
</tr>
<tr>
<td>Bad behaviour</td>
<td>No</td>
<td>ditto</td>
<td></td>
</tr>
<tr>
<td>Vested interests influence decisions; free-markets, financial speculation (GFC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bad values</td>
<td>No</td>
<td>ditto</td>
<td></td>
</tr>
<tr>
<td>Consumption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other irrational</td>
<td>No</td>
<td>Public discontent</td>
<td>1970-</td>
</tr>
<tr>
<td>Weary of warnings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diminishing returns</td>
<td>No</td>
<td></td>
<td>1800-</td>
</tr>
<tr>
<td>Large efficiencies gains have already been used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingenuity gap</td>
<td>No</td>
<td></td>
<td>1900-</td>
</tr>
<tr>
<td>Energy profit ratio decreasing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solution unlikely</td>
<td>No</td>
<td></td>
<td>2010-</td>
</tr>
<tr>
<td>Massive change required; technology alone increases the problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource wars</td>
<td>No</td>
<td></td>
<td>1800-</td>
</tr>
<tr>
<td>Iraq, African states, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Links with the Limits to Growth

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Evident in the LtG?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource wars</td>
<td>Not included</td>
</tr>
<tr>
<td>No anticipation</td>
<td>The purpose of the modelling</td>
</tr>
<tr>
<td>No perception</td>
<td>Overshoot & collapse – it is possible to temporarily exceed the carrying capacity due to time lags in the impacts</td>
</tr>
<tr>
<td>Bad behaviour</td>
<td></td>
</tr>
<tr>
<td>Bad values</td>
<td>Incorporated in behavioural response functions; but alternative behaviours explored</td>
</tr>
<tr>
<td>Other irrational</td>
<td></td>
</tr>
<tr>
<td>Diminishing returns</td>
<td>More capital and inputs required for lower grade resources</td>
</tr>
<tr>
<td>Ingenuity gap</td>
<td>Adaptive technology did not work unless it was instantly available (no delay of decades) and rate of improvements where faster than economic growth</td>
</tr>
</tbody>
</table>
| Solution unlikely | Collapse is likely unless:
 a. there is less consumption (combined with technology);
 b. technological progress is ‘infinitely accessible’ |
Have we learnt anything?

• Consider “modern” as the Industrial Revolution

• LeBlanc
 • resource wars – Iraq, others (Afghanistan – pipelines; Middle East – water)?

• Diamond
 • largely unaware of global issues (climate, oil) until last half century
 • denial of climate change; peak oil
 • wrong responses – market forces (no foresight, just reactive); technology (efficiency contributes to growth)
 • truly massive changes are required – may be technically impossible (too late); unless demand (consumption) is reduced absolutely, and work less

• Tainter and Homer-Dixon
 • energy efficiencies (and growth), EIOR decreasing;
 • geo-engineering proposals (massive, unknown side effects)
Messages

• There are success stories of avoiding collapse, but very few within isolated systems

• There is a very common recourse to using technology, rather than changing behaviour

• It appears that we (modern society) have progressed SLOWLY along the road map toward addressing our global problems

• But we now appear to be potentially in the last stage:
 • solution unlikely
Sustainable Ecosystems
Graham Turner
Leader, Stocks and Flows

Phone: +02 6242 1653
Email: graham.turner@csiro.au