TIME TO STEP OFF OUR ROAD TRANSPORT GREENHOUSE GAS

Professor John Stanley

Melbourne

December 2021.

CONTEXT: SUSTAINABLE CITIES AND REGIONS

A sustainable city or region is one which ...

(Stanley, Stanley and Hansen 2017)

- 1. Increases its economic productivity
- 2. Reduces its environmental footprint and meets critical environmental constraints (esp. climate change is an existential risk and should be treated as a constraint)
- 3. Ensures a decent base level of capabilities for all, to support people to flourish (increase social inclusion; reduce inequality)
- 4. Is healthy and safe
- 5. Promotes intergenerational equity
- 6. Engages its communities widely

JOHN STANLEY JANET STANLEY ROSLYNNE HANSEN

EE Elgar

How Great Cities Happen

Integrating People, Land Use and Transport

TRANSPORT WITHIN AUSTRALIA'S GHG EMISSIONS

2020 Total Other Land use and related Adriculture Transport Stationary Energy Electricity -100 100 300 400 500 600 700 200 2020 2005

Australian GHG emissions by sector: 2005 and

- Transport = 94 Mt emissions in 2020 (82 Mt in 2005)
- 18.3% of total domestic emissions in 2020 (16% in 2012, @ 90 Mt) Australia's emissions projections 2020 (industry.gov.au)
- Without COVID, would have been >100 Mt
 - Was 102 Mt in 2018
 - Growing around 1 Mt annually
- Has increased by about 2/3 since 1990 2020: Transport is letting Australia down in the race to cut emissions - University of Wollongong – UOW
- BAU projection of ~110 Mt by 2030
- Or 100 Mt in 2030 (gov't projection) with some efficiency improvements = flatlining Australia's emissions projections 2020 (industry.gov.au)

ROAD TRANSPORT GHG EMISSIONS

Road Transport GHG Emissions (Mt; 2020)

Road transport = ~85% of transport GHG emissions

- Road transport GHG emissions are growing (exc. COVID) because
 - Vehicle Kilometres (VKMs) are growing (slide 5)
 - Emissions intensity (emissions/VKM) is not showing much improvement
 - Fuel economy rates (slide 6)
 - Emissions intensity of fuels
- Strong growth in SUV sales/use and in VKMs by Light Commercial Vehicles (slide 5) stand out

GROWING MOTOR VEHICLE USE

(ABS SMVU 2020) 300,000 250.000 200.000 150,000 100,000 50,000 Pax vehicles LCVs Rigids Artics Buses All vehicles ■ 2012 ■ 2014 ■ 2016 ■ 2018 ■ 2020

Vehicle kilometres travelled by vehicle type

- 2018 total VKMs 9.7% higher than 2012
 - Growing ~1.6% p.a. pre COVID
- Pax vehicles up 7.3% to 2018 (~1.2% pa)
- LCVs +19.7% 2012-18 (~3.0% pa)
- Rigids +10.9% (~1.7% pa)
- Artics similar growth rate to pax vehicles
- Buses travelled less in 2018 than in 2012
- Fast population growth accounts for most of the emissions growth from increased VKT = +8.7% (2012-18)
 - VKMs/pc barely increased overall
 - Outer urban sprawl from rapid population growth has accentuated VKT growth (poor PT options)
- Vancouver and Freiburg have been targeting no increase in absolute motor vehicle VKMs, using their₅ land use transport strategies (growing up not out)

FUEL ECONOMY GOING NOWHERE (APART FROM ARTICS)

Fuel economy (L/100kms) by vehicle type (ABS SMVU 2020)

- Growing VKMs would not be a problem for emissions if fuel economy was improving rapidly
- It isn't!
- Articulated trucks are the only vehicle class to have shown a steady improvement in fuel economy in recent years
- Passenger vehicle fuel economy getting worse as SUV penetration increases
- LCV fuel economy also getting worse (and use growing strongly)

HYPOTHETICAL ON CUTTING ROAD TRANSPORT EMISSIONS ~50% BY 2030

Transport GHG emissions hypothetical profiles to reduce emissions by 50% by 2030 on 2005

- Target for road transport = ~50% reduction by 2030, on 2005
- BAU in 2030 ~ 110 Mt (or 100 Mt projected with improvements)
- 50% reduction on 2005 means ~60 Mt lower than BAU for total transport emissions
 - Or ~50 Mt lower than government projections (from slide 3)
- ~50 Mt lower for road transport emissions against BAU (or ~42 Mt below government projection)

STANLEY ET AL. (2018) EXPLORED CUTTING ROAD TRANSPORT GHG EMISSIONS BY ~50 MT BY 2030!

green trains trams Truck fuel efficiency Freight effiency Car fuel efficiency Measure 4: Car occupancy (urban) Measure 3: Mode Shift Car to PT (urban) Measure 2: Mode Shift Car to Active Transport (urban) Measure 1: Reduce personal motorised travel

demand (urban) BAU emissions

- Chart shows one way that 50 Mt could hypothetically have been saved
 - With behaviour change and technology measures that were seen to be feasible at the time

• But there are now fewer years to save that 50 Mt!

SOURCES OF EMISSIONS REDUCTIONS IN STANLEY ET AL. (2018)

Behaviour change (from 2015 to 2030) (~20Mt)

- Personal travel demand reduction (15% less car VKT; reduce VKMs not 1. trips, because of the inclusion value of trips; land use strategy key) = \sim 5.8 Mt
- 2. **Increased active transport mode share** (15% shift from car; land use again key, plus cycling infrastructure) = \sim 4.9 Mt
- Increase urban PT mode share to 20% (a reasonable target if we get 3. serious about the middle/outer suburbs; big increase in bus services integral) = ~ 2.1 Mt
- 4. **Increase car occupancy** (from 1.56 to 1.67; it is going the other way) = ~ 1.4 Mt
- **Improve freight efficiency** (15% emission reduction; smart logistics) = \sim 6.9 5. Mt

Tech improvements to cut emissions intensities (~30Mt)

- **Reduce vehicle emissions intensity** (see next Slide 10) 6.
 - Cars to 56% below 2005 = ~12.0 Mt
 - Light vehicles to 56% below 2005 = -7.7 Mt
 - Heavy vehicles to 40% below 2005 = -9.5 Mt
- $Total = \sim 50 Mt$ •

Cutting car emissions (~30Mt of

CAN WE DO IT? TECHNOLOGY

- The average emissions intensity of new Australian cars /LCVs in 2020 was 25% below 2005 (NTC 2021)
- We would need another ~30% reduction pretty quickly
 - EU 2020 emission standards implemented ASAP would go some way to getting us there (depends on vehicle turnover rates)
- For passenger cars, the 2019 European average emissions intensity (30 countries) was 122g/km, with Australia at 150g/km (NTC 2021)
- LCVs = ~18% of Australian 2020 sales <200g/km; Europe = 83% (NTC 2021)
- EU emission standards are tightening (see chart and next slide)
- Vancouver's new (draft) Transport Strategy (Transport 2050) is targeting 2030 light vehicle emissions at 65% less than 2010

Getting serious about cutting GHG emissions on light vehicles (Source: NTC 2021 and EU sources)

Remind me – how many cars and LCVs do we manufacture in Australia?

TECHNOLOGY (CONT. 2)

 Early adoption of European CO₂ emissions standards, or equivalent, should be an immediate government priority for accelerating the required technological change (voluntary standards aren't doing it)

- EU 2021-24 average for new vehicles= Cars 95gm CO₂/km; Vans 147gm/km; further reductions of 55% cars/50% Vans are now proposed for 2030, with all new Cars/Vans to be emission free from 2035
- Fleetwide reductions of ~32% by 2030, on 2005, predicted
- Suggests we will struggle to meet the reduction target set above but will it will be even worse the longer we delay!
- Behaviour change measures will thus need to do more than shown in slide 9 to 2030 to deliver ~50 Mt emissions reductions
- For heavy vehicles, after-market technologies (hydrogen based) are becoming available where trials show that truck (and other) diesel CO₂ emissions by can be reduced by 25%, or more (US test results), as a transitional approach to lowering emissions
 - Might OEMs threaten to void warranties if these are added?

BEHAVIOUR CHANGE: ROAD PRICING REFORM AS A STIMULANT (STANLEY AND HENSHER 2017)

- Central proposition: road users should pay for ALL the societal costs attributable to their travel choices
- What right do they have to impose these costs on others!
- The cost base should include ALL the external costs of road use (costs that are not paid by users), with fuel taxes
 plus registration charges removed
- Imagine we did this for cars via a fuel tax, until we implement mass-distance-location based charges
- 2015 external cost estimates from Stanley and Hensher (2017)
 - Congestion (35.9c/L)
 - Air pollution and noise (4.8c/L)
 - GHG emissions (11.1c/L; valued at \$US35/t in 2010 prices, updated)
 - Accident costs not covered through insurances (13.6c/L)
 - Health costs from car-dependence (e.g., less walking) not estimated
 - Road damage costs attribute to heavy vehicles
- With optimal pricing, required 27.5c/L increase in fuel excise at 2015 (was 39.6c/L; retail ~\$1.30/L for ULP)
- Welfare benefits of ~\$220 million estimated; increased fuel excise payments ~\$4 billion => use this to provide alternatives, especially in car dependent areas

LONG RUN REDUCTION IN CAR VKT AT 2030: SYDNEY CASE STUDY (STANLEY ET AL. 2018)

The 27.5c/L increase in fuel excise from slide 12 was almost a 25% increase in fuel costs, one of the options tested above.

SETTING THE SPATIAL CONTEXT: START WITH THE KIND OF CITY YOU WANT: A COMPACT CITY WITH MUCH REDUCED NEED TO TRAVEL BY CAR

- **1. Strong core:** key to agglomeration (productivity) economies (Melbourne well-placed here)
- 2. Middle urban knowledge clusters: help to boost productivity, spread higher income job opportunities and reduce external costs of growth
 - Provided only a few well-chosen "polys" are chosen (esp. based around universities and researchbased medical centres)
 - Plan Melbourne provides a strong lead here but is weak on delivery
 - Suburban Rail Loop = nice thought but overkill; Medium Capacity Transit at an earlier date would be better
 - > Invest in cluster development on multiple fronts (not just in transport)
- 3. Strategic transit corridors: for increased inner/middle urban density (Vancouver does this very well and is looking to do more but it was not part of Plan Melbourne)
- 4. **20-minute neighbourhoods:** a complementary "bottoms-up" approach across the whole city
 - A great Plan Melbourne initiative (copied by Singapore!) but weak on delivery (COVID a help)
- 5. **Ports and airports**: a key part of the trade-exposed chain

Conclusion: Plan Melbourne has most of what is needed on the land use front to support improved sustainability (reduced VKT) but is weak on implementation of some core elements and needs a transit corridor focus added

CONCLUSIONS

- Road transport is a large and growing source of Australian GHG emissions
- GHG emissions reduction should be a binding constraint on land use/transport strategy
- A 50% reduction target for road transport GHG emissions (by 2030, on 2005 levels) is potentially achievable by a combination of extensive behaviour change measures and technological improvements
- This needs partnerships between governments and other stakeholders
- Adoption of EU emission standards, or equivalent, ASAP is key to accelerating low emissions technologies (and needs renewable energy)
- Behaviour change measures can impact more quickly
 - Requirements include integrated land use transport strategy (to reduce VKT), road pricing reform that charges for externalities, a large increase in PT (bus) services in outer/regional areas (EVs) and better infrastructure for active travel/electric micro-mobility

CONCLUSIONS (2)

- Technological changes will have to do more of the heavy lifting, in total, over the longer term
 - In addition to early adoption of EU emission standards, incentives for purchase/use of EVs should be widely available, as we did with solar (e.g., cost rebates, fee discounts, access to bus lanes/parking places, awareness raising, government purchasing priority, installation of EV charging infrastructure)
 - Vic Government electric bus initiatives are promising (some coming; all new buses from 2025)
- Plan Melbourne has the foundations for an emissions-supportive land use strategy but implementation has been weak on the key elements of NEICs and 20 Minute Neighbourhoods
 - And strategic transit corridors should be added to Plan Melbourne as favoured development locations
 - Melbourne needs an integrated transport strategy
- The population growth rate should be part of the discussion about emissions and other futures
- A virtuous element of a concerted attack on road transport GHG emissions is that the CO-BENEFITS will far exceed the direct environmental benefits (e.g., congestion cost savings; agglomeration economies; increased social inclusion; safer travel; better health)

REFERENCES

- Australian Bureau of Statistics (2020), Survey of Motor Vehicle Use, Available at <u>92080D0001</u> 202006.xls (live.com)
- National Transport Commission (2021), Carbon dioxide emissions intensity for new Australian Light Vehicles 2020, Author: Melbourne. Carbon dioxide emissions intensity for new Australian light vehicles 2020.pdf (ntc.gov.au)
- Stanley, J. and Hensher, D. (2017), Getting the prices right, Road and Transport Research 26(3), 13-21.
- Stanley, J., Stanley, J. and Hansen, R. (2017), How great cities happen, Cheltenham UK: Edward Elgar Publishing.
- Stanley, J., Ellison, R., Loader, C. and Hensher, D. (2018), Reducing Australian motor vehicle greenhouse gas emission, *Transportation Research Part A* 109, 76-88.